A New Model for Error-Tolerant Side-Channel Cube Attacks

نویسندگان

  • Zhenqi Li
  • Bin Zhang
  • Junfeng Fan
  • Ingrid Verbauwhede
چکیده

Side-channel cube attacks are a class of leakage attacks on block ciphers in which the attacker is assumed to have access to some leaked information on the internal state of the cipher as well as the plaintext/ciphertext pairs. The known Dinur-Shamir model and its variants require error-free data for at least part of the measurements. In this paper, we consider a new and more realistic model which can deal with the case when all the leaked bits are noisy. In this model, the key recovery problem is converted to the problem of decoding a binary linear code over a binary symmetric channel with the crossover probability which is determined by the measurement quality and the cube size. We use the maximum likelihood decoding method to recover the key. As a case study, we demonstrate efficient key recovery attacks on PRESENT. We show that the full 80-bit key can be restored with 2 measurements with an error probability of 19.4% for each measurement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error-Tolerant Algebraic Side-Channel Attacks Using BEE

Algebraic side-channel attacks are a type of side-channel analysis which can recover the secret information with a small number of samples (e.g., power traces). However, this type of side-channel analysis is sensitive to measurement errors which may make the attacks fail. In this paper, we propose a new method of algebraic side-channel attacks which considers noisy leakages as integers restrict...

متن کامل

Fault-Tolerant Finite Field Computation in the Public Key Cryptosystems

In this paper, we propose a new method for fault tolerant computation over GF (2) for use in public key cryptosystems. In particular, we are concerned with the active side channel attacks, i.e., fault attacks. We define a larger ring in which new computation is performed with encoded elements while arithmetic structure is preserved. Computation is decomposed into parallel, mutually independent,...

متن کامل

Algebraic, AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers

This paper presents the first results on AIDA/cube, algebraic and sidechannel attacks on variable number of rounds of all members of the KATAN family of block ciphers. Our cube attacks reach 60, 40 and 30 rounds of KATAN32, KATAN48 and KATAN64, respectively. In our algebraic attacks, we use SAT solvers as a tool to solve the quadratic equations representation of all KATAN ciphers. We introduced...

متن کامل

MDASCA: An Enhanced Algebraic Side-Channel Attack for Error Tolerance and New Leakage Model Exploitation

Algebraic side-channel attack (ASCA) is a powerful cryptanalysis technique different from conventional side-channel attacks. This paper studies ASCA from three aspects: enhancement, analysis and application. To enhance ASCA, we propose a generic method, called Multiple Deductions-based ASCA (MDASCA), to cope the multiple deductions caused by inaccurate measurements or interferences. For the fir...

متن کامل

Side Channel Cube Attacks on Block Ciphers

In this paper we formalize the notion of leakage attacks on iterated block ciphers, in which the attacker can find (via physical probing, power measurement, or any other type of side channel) one bit of information about the intermediate state of the encryption after each round. Since bits computed during the early rounds can be typically represented by low degree multivariate polynomials, cube...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013